Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging.

نویسندگان

  • Joachim Loos
  • Alexander Alexeev
  • Nadia Grossiord
  • Cor E Koning
  • Oren Regev
چکیده

The morphology of conductive nanocomposites consisting of low concentration of single-wall carbon nanotubes (SWNT) and polystyrene (PS) has been studied using atomic force microscopy (AFM), transmission electron microscopy (TEM) and, in particular, scanning electron microscopy (SEM). Application of charge contrast imaging in SEM allows visualization of the overall SWNT dispersion within the polymer matrix as well as the identification of individual or bundled SWNTs at high resolution. The contrast mechanism involved will be discussed. In conductive nanocomposites the SWNTs are homogeneously dispersed within the polymer matrix and form a network. Beside fairly straight SWNTs, strongly bended SWNTs have been observed. However, for samples with SWNT concentrations below the percolation threshold, the common overall charging behavior of an insulating material is observed preventing the detailed morphological investigation of the sample.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increasing the hydrogen storage capacity of single-walled carbon nanotube (SWNT) through facile impregnation by TiO2, ZrO2 and ZnO nanocatalysts

Various nanocomposites of TiO2, ZnO and ZrO2 decorated single wall Carbon nanotubes (SWNTs) were fabricated by facile and template free continuous ultrasonication/stirring of virgin metal oxide nanopowders and SWNTs in ethanol under UV-light illumination. The TEM micrographs showed that nanoparticles (NPs) were uniformly dispersed and bonded on the surface of SWNTs. The results of XRD as well a...

متن کامل

Interfacial in situ polymerization of single wall carbon nanotube/nylon 6,6 nanocomposites

An interfacial polymerization method for nylon 6,6 was adapted to produce nanocomposites with single wall carbon nanotubes (SWNT) via in situ polymerization. SWNT were incorporated in purified, functionalized or surfactant stabilized forms. The functionalization of SWNT was characterized by FTIR, Raman spectroscopy and TGA and the SWNT dispersion was characterized by optical microscopy before a...

متن کامل

A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high-performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical vapor deposition products is developed as a general synthetic method to prepare a family of metal oxides [MxOy (M = Fe...

متن کامل

Flexible organic light-emitting diodes with transparent carbon nanotube electrodes: problems and solutions.

We study in detail here the application of transparent, conductive carbon single-wall nanotube (SWNT) networks as electrodes in flexible organic light-emitting diodes (FOLEDs). Overall comparisons of these networks to the commonly used electrodes poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and indium tin oxide (ITO) are made, and SWNT networks are shown to have excellen...

متن کامل

Catalytic polymerization and facile grafting of poly(furfuryl alcohol) to single-wall carbon nanotube: preparation of nanocomposite carbon.

A nanocomposite carbon was prepared by grafting a carbonizable polymer, poly(furfuryl alcohol) (PFA), to a single-wall carbon nanotube (SWNT). The SWNT was first functionalized with arylsulfonic acid groups on the sidewall via a method using a diazonium reagent. Both Raman and FTIR spectroscopies were used to identify the functional groups on the nanotube surface. HRTEM imaging shows that the S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultramicroscopy

دوره 104 2  شماره 

صفحات  -

تاریخ انتشار 2005